Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 2.308
1.
Genes (Basel) ; 15(4)2024 Mar 28.
Article En | MEDLINE | ID: mdl-38674358

Pathogenic ASH1L variants have been reported in probands with broad phenotypic presentations, including intellectual disability, autism spectrum disorder, attention deficit hyperactivity disorder, seizures, congenital anomalies, and other skeletal, muscular, and sleep differences. Here, we review previously published individuals with pathogenic ASH1L variants and report three further probands with novel ASH1L variants and previously unreported phenotypic features, including mixed receptive language disorder and gait disturbances. These novel data from the Brain Gene Registry, an accessible repository of clinically derived genotypic and phenotypic data, have allowed for the expansion of the phenotypic and genotypic spectrum of this condition.


Histone-Lysine N-Methyltransferase , Neurodevelopmental Disorders , Phenotype , Humans , Neurodevelopmental Disorders/genetics , Neurodevelopmental Disorders/pathology , Male , Histone-Lysine N-Methyltransferase/genetics , Female , Child , Genotype , DNA-Binding Proteins/genetics , Intellectual Disability/genetics , Intellectual Disability/pathology , Transcription Factors/genetics , Child, Preschool , Autism Spectrum Disorder/genetics , Autism Spectrum Disorder/pathology , Mutation , Adolescent
2.
Genes (Basel) ; 15(4)2024 Mar 29.
Article En | MEDLINE | ID: mdl-38674365

O'Donnell-Luria-Rodan (ODLURO) syndrome is an autosomal dominant disorder caused by mutations in the KMT2E gene. The clinical phonotype of the affected individuals is typically characterized by global developmental delay, autism, epilepsy, hypotonia, macrocephaly, and very mild dysmorphic facial features. In this report, we describe the case of a 6-year-old boy with ODLURO syndrome who is a carrier of the synonymous mutation c.186G>A (p.Ala62=) in the KMT2E gene, predicted to alter splicing by in silico tools. Given the lack of functional studies on the c.186G>A variant, in order to assess its potential functional effect, we sequenced the patient's cDNA demonstrating its impact on the mechanism of splicing. To the best of our knowledge, our patient is the second to date reported carrying this synonymous mutation, but he is the first whose functional investigation has confirmed the deleterious consequence of the variant, resulting in exon 4 skipping. Additionally, we suggest a potential etiological mechanism that could be responsible for the aberrant splicing mechanism in KMT2E.


Phenotype , Humans , Male , Child , Abnormalities, Multiple/genetics , Abnormalities, Multiple/pathology , Intellectual Disability/genetics , Intellectual Disability/pathology , DNA-Binding Proteins/genetics , RNA Splicing/genetics , Silent Mutation , Developmental Disabilities/genetics , Developmental Disabilities/pathology
3.
Genes (Basel) ; 15(4)2024 Mar 29.
Article En | MEDLINE | ID: mdl-38674371

The adaptor protein 4 (AP-4) constitutes a conserved hetero-tetrameric complex within the family of adaptor protein (AP) complex, crucial for the signal-mediated trafficking of integral membrane proteins. Mutations affecting all subunits of the AP-4 complex have been linked to autosomal-recessive cerebral palsy and a complex hereditary spastic paraparesis (HSP) phenotype. Our report details the case of a 14-year-old boy born to consanguineous parents, presenting psychomotor delay, severe intellectual disability, microcephaly, and trigonocephaly. Despite a history of febrile seizures, subsequent years were devoid of seizures, with normal EEG. Exome sequencing revealed pathogenic variants in both the AP4B1 and ERF genes. Significantly, the patient exhibited features associated with AP4B1 mutations, including distinctive traits such as cranial malformations. The ERF gene variant, linked to craniosynostosis, likely contributes to the observed trigonocephaly. This case represents the initial documentation of a concurrent mutation in the AP4B1 and ERF genes, underscoring the critical role of exome analysis in unraveling complex phenotypes. Understanding these complex genotypes offers valuable insights into broader syndromic conditions, facilitating comprehensive patient management.


Adaptor Protein Complex 4 , Mutation , Peptide Termination Factors , Phenotype , Repressor Proteins , Humans , Male , Adolescent , Peptide Termination Factors/genetics , Adaptor Protein Complex 4/genetics , Intellectual Disability/genetics , Intellectual Disability/pathology , Exome Sequencing , Microcephaly/genetics , Microcephaly/pathology , Craniosynostoses/genetics , Craniosynostoses/pathology
4.
Eur J Hum Genet ; 32(5): 576-583, 2024 May.
Article En | MEDLINE | ID: mdl-38467730

Intellectual disability (ID) is a common disorder, yet there is a wide spectrum of impairment from mild to profoundly affected individuals. Mild ID is seen as the low extreme of the general distribution of intelligence, while severe ID is often seen as a monogenic disorder caused by rare, pathogenic, highly penetrant variants. To investigate the genetic factors influencing mild and severe ID, we evaluated rare and common variation in the Northern Finland Intellectual Disability cohort (n = 1096 ID patients), a cohort with a high percentage of mild ID (n = 550) and from a population bottleneck enriched in rare, damaging variation. Despite this enrichment, we found only a small percentage of ID was due to recessive Finnish-enriched variants (0.5%). A larger proportion was linked to dominant variation, with a significant burden of rare, damaging variation in both mild and severe ID. This rare variant burden was enriched in more severe ID (p = 2.4e-4), patients without a relative with ID (p = 4.76e-4), and in those with features associated with monogenic disorders. We also found a significant burden of common variants associated with decreased cognitive function, with no difference between mild and more severe ID. When we included common and rare variants in a joint model, the rare and common variants had additive effects in both mild and severe ID. A multimodel inference approach also found that common and rare variants together best explained ID status (ΔAIC = 16.8, ΔBIC = 10.2). Overall, we report evidence for the additivity of rare and common variant burden throughout the spectrum of intellectual disability.


Intellectual Disability , Humans , Intellectual Disability/genetics , Intellectual Disability/pathology , Male , Female , Finland , Adult , Genetic Variation
5.
Adv Sci (Weinh) ; 11(15): e2306229, 2024 Apr.
Article En | MEDLINE | ID: mdl-38342602

Splicing factor polyglutamine binding protein-1 (PQBP1) is abundantly expressed in the central nervous system during development, and mutations in the gene cause intellectual disability. However, the roles of PQBP1 in cancer progression remain largely unknown. Here, it is shown that PQBP1 overexpression promotes tumor progression and indicates worse prognosis in ovarian cancer. Integrative analysis of spyCLIP-seq and RNA-seq data reveals that PQBP1 preferentially binds to exon regions and modulates exon skipping. Mechanistically, it is shown that PQBP1 regulates the splicing of genes related to the apoptotic signaling pathway, including BAX. PQBP1 promotes BAX exon 2 skipping to generate a truncated isoform that undergoes degradation by nonsense-mediated mRNA decay, thus making cancer cells resistant to apoptosis. In contrast, PQBP1 depletion or splice-switching antisense oligonucleotides promote exon 2 inclusion and thus increase BAX expression, leading to inhibition of tumor growth. Together, the results demonstrate an oncogenic role of PQBP1 in ovarian cancer and suggest that targeting the aberrant splicing mediated by PQBP1 has therapeutic potential in cancer treatment.


Intellectual Disability , Ovarian Neoplasms , Female , Humans , bcl-2-Associated X Protein/genetics , DNA-Binding Proteins/genetics , Intellectual Disability/genetics , Intellectual Disability/pathology , Ovarian Neoplasms/genetics , RNA Splicing/genetics , RNA Splicing Factors/genetics
6.
Neuropediatrics ; 55(2): 129-134, 2024 04.
Article En | MEDLINE | ID: mdl-38365198

PGAP2 gene has been known to be the cause of "hyperphosphatasia, mental retardation syndrome-3" (HPMRS3). To date, 14 pathogenic variants in PGAP2 have been identified as the cause of this syndrome in 24 patients described in single-case reports or small clinical series with pan-ethnic distribution. We aim to present a pediatric PGAP2-mutated case, intending to further expand the clinical phenotype of the syndrome and to report our experience on a therapeutic approach to drug-resistant epilepsy.We present the clinical, neuroradiological, and genetic characterization of a Caucasian pediatric subject with biallelic pathogenic variants in the PGAP2 gene revealed by next generation sequencing analysis.We identified a subject who presented with global developmental delay and visual impairment. Brain magnetic resonance imaging showed mild hypoplasia of the inferior cerebellar vermis and corpus callosum and mild white matter reduction. Laboratory investigations detected an increase in alkaline phosphatase. At the age of 13 months, he began to present epileptic focal seizures with impaired awareness, which did not respond to various antiseizure medications. Electroencephalogram (EEG) showed progressive background activity disorganization and multifocal epileptic abnormalities. Treatment with high-dose pyridoxine showed partial benefit, but the persistence of seizures and the lack of EEG amelioration prompted us to introduce ketogenic diet treatment.Our case provides a further phenotypical expansion of HPMRS3 to include developmental and epileptic encephalopathy. Due to the limited number of patients reported so far, the full delineation of the clinical spectrum of HPMRS3 and indications for precision medicine would benefit from the description of new cases and their follow-up evaluations.


Abnormalities, Multiple , Epilepsy , Intellectual Disability , Humans , Infant , Male , Abnormalities, Multiple/pathology , Brain/pathology , Epilepsy/diagnostic imaging , Epilepsy/drug therapy , Epilepsy/genetics , Intellectual Disability/genetics , Intellectual Disability/pathology , Phenotype , Seizures , Syndrome
7.
Am J Hum Genet ; 111(3): 487-508, 2024 Mar 07.
Article En | MEDLINE | ID: mdl-38325380

Pathogenic variants in multiple genes on the X chromosome have been implicated in syndromic and non-syndromic intellectual disability disorders. ZFX on Xp22.11 encodes a transcription factor that has been linked to diverse processes including oncogenesis and development, but germline variants have not been characterized in association with disease. Here, we present clinical and molecular characterization of 18 individuals with germline ZFX variants. Exome or genome sequencing revealed 11 variants in 18 subjects (14 males and 4 females) from 16 unrelated families. Four missense variants were identified in 11 subjects, with seven truncation variants in the remaining individuals. Clinical findings included developmental delay/intellectual disability, behavioral abnormalities, hypotonia, and congenital anomalies. Overlapping and recurrent facial features were identified in all subjects, including thickening and medial broadening of eyebrows, variations in the shape of the face, external eye abnormalities, smooth and/or long philtrum, and ear abnormalities. Hyperparathyroidism was found in four families with missense variants, and enrichment of different tumor types was observed. In molecular studies, DNA-binding domain variants elicited differential expression of a small set of target genes relative to wild-type ZFX in cultured cells, suggesting a gain or loss of transcriptional activity. Additionally, a zebrafish model of ZFX loss displayed an altered behavioral phenotype, providing additional evidence for the functional significance of ZFX. Our clinical and experimental data support that variants in ZFX are associated with an X-linked intellectual disability syndrome characterized by a recurrent facial gestalt, neurocognitive and behavioral abnormalities, and an increased risk for congenital anomalies and hyperparathyroidism.


Hyperparathyroidism , Intellectual Disability , Neurodevelopmental Disorders , Male , Female , Animals , Humans , Intellectual Disability/pathology , Zebrafish/genetics , Mutation, Missense/genetics , Transcription Factors/genetics , Phenotype , Neurodevelopmental Disorders/genetics
8.
Am J Med Genet A ; 194(6): e63534, 2024 Jun.
Article En | MEDLINE | ID: mdl-38318947

UPF3B encodes the Regulator of nonsense transcripts 3B protein, a core-member of the nonsense-mediated mRNA decay pathway, protecting the cells from the potentially deleterious actions of transcripts with premature termination codons. Hemizygous variants in the UPF3B gene cause a spectrum of neuropsychiatric issues including intellectual disability, autism spectrum disorder, attention deficit hyperactivity disorder, and schizophrenia/childhood-onset schizophrenia (COS). The number of patients reported to date is very limited, often lacking an extensive phenotypical and neuroradiological description of this ultra-rare syndrome. Here we report three subjects harboring UPF3B variants, presenting with variable clinical pictures, including cognitive impairment, central hypotonia, and syndromic features. Patients 1 and 2 harbored novel UPF3B variants-the p.(Lys207*) and p.(Asp429Serfs*27) ones, respectively-while the p.(Arg225Lysfs*229) variant, identified in Patient 3, was already reported in the literature. Novel features in our patients are represented by microcephaly, midface hypoplasia, and brain malformations. Then, we reviewed pertinent literature and compared previously reported subjects to our cases, providing possible insights into genotype-phenotype correlations in this emerging condition. Overall, the detailed phenotypic description of three patients carrying UPF3B variants is useful not only to expand the genotypic and phenotypic spectrum of UPF3B-related disorders, but also to ameliorate the clinical management of affected individuals.


Phenotype , Humans , Male , Female , Child , RNA-Binding Proteins/genetics , Genetic Association Studies , Child, Preschool , Mutation/genetics , Adolescent , Intellectual Disability/genetics , Intellectual Disability/pathology , Genetic Predisposition to Disease
9.
Clin Genet ; 105(6): 620-629, 2024 Jun.
Article En | MEDLINE | ID: mdl-38356149

PPP1R21 encodes for a conserved protein that is involved in endosomal maturation. Biallelic pathogenic variants in PPP1R21 have been associated with a syndromic neurodevelopmental disorder from studying 13 affected individuals. In this report, we present 11 additional individuals from nine unrelated families and their clinical, radiological, and molecular findings. We identified eight different variants in PPP1R21, of which six were novel variants. Global developmental delay and hypotonia are neurological features that were observed in all individuals. There is also a similar pattern of dysmorphic features with coarse faces as a gestalt observed in several individuals. Common findings in 75% of individuals with available brain imaging include delays in myelination, wavy outline of the bodies of the lateral ventricles, and slight prominence of the bodies of the lateral ventricles. PPP1R21-related neurodevelopmental disorder is associated with a consistent phenotype and should be considered in highly consanguineous individuals presenting with developmental delay/intellectual disability along with coarse facial features.


Neurodevelopmental Disorders , Phenotype , Adolescent , Child , Child, Preschool , Female , Humans , Infant , Male , Brain/diagnostic imaging , Brain/pathology , Developmental Disabilities/genetics , Developmental Disabilities/pathology , Genetic Association Studies , Genetic Predisposition to Disease , Intellectual Disability/genetics , Intellectual Disability/pathology , Mutation , Neurodevelopmental Disorders/genetics , Neurodevelopmental Disorders/pathology , Pedigree
10.
J Hum Genet ; 69(5): 197-203, 2024 May.
Article En | MEDLINE | ID: mdl-38374166

CAPZA2 encodes the α2 subunit of CAPZA, which is vital for actin polymerization and depolymerization in humans. However, understanding of diseases associated with CAPZA2 remains limited. To date, only three cases have been documented with neurodevelopmental abnormalities such as delayed motor development, speech delay, intellectual disability, hypotonia, and a history of seizures. In this study, we document a patient who exhibited seizures, mild intellectual disability, and impaired motor development yet did not demonstrate speech delay or hypotonia. The patient also suffered from recurrent instances of respiratory infections, gastrointestinal and allergic diseases. A novel de novo splicing variant c.219+1 G > A was detected in the CAPZA2 gene through whole-exome sequencing. This variant led to exon 4 skipping in mRNA splicing, confirmed by RT-PCR and Sanger sequencing. To our knowledge, this is the third study on human CAPZA2 defects, documenting the fourth unambiguously diagnosed case. Furthermore, this splicing mutation type is reported here for the first time. Our research offers additional support for the existence of a CAPZA2-related non-syndromic neurodevelopmental disorder. Our findings augment our understanding of the phenotypic range associated with CAPZA2 deficiency and enrich the knowledge of the mutational spectrum of the CAPZA2 gene.


CapZ Actin Capping Protein , Developmental Disabilities , Epilepsy , Heterozygote , Muscle Hypotonia , Mutation , Child, Preschool , Female , Humans , Male , Developmental Disabilities/genetics , Developmental Disabilities/pathology , Epilepsy/genetics , Exome Sequencing , Intellectual Disability/genetics , Intellectual Disability/pathology , Muscle Hypotonia/genetics , Muscle Hypotonia/pathology , Phenotype , RNA Splicing/genetics , CapZ Actin Capping Protein/genetics
11.
Clin Genet ; 105(6): 655-660, 2024 Jun.
Article En | MEDLINE | ID: mdl-38384171

Precise regulation of gene expression is important for correct neurodevelopment. 9q34.3 deletions affecting the EHMT1 gene result in a syndromic neurodevelopmental disorder named Kleefstra syndrome. In contrast, duplications of the 9q34.3 locus encompassing EHMT1 have been suggested to cause developmental disorders, but only limited information has been available. We have identified 15 individuals from 10 unrelated families, with 9q34.3 duplications <1.5 Mb in size, encompassing EHMT1 entirely. Clinical features included mild developmental delay, mild intellectual disability or learning problems, autism spectrum disorder, and behavior problems. The individuals did not consistently display dysmorphic features, congenital anomalies, or growth abnormalities. DNA methylation analysis revealed a weak DNAm profile for the cases with 9q34.3 duplication encompassing EHMT1, which could segregate the majority of the affected cases from controls. This study shows that individuals with 9q34.3 duplications including EHMT1 gene present with mild non-syndromic neurodevelopmental disorders and DNA methylation changes different from Kleefstra syndrome.


Chromosome Deletion , Chromosome Duplication , Chromosomes, Human, Pair 9 , DNA Methylation , Heart Defects, Congenital , Histone-Lysine N-Methyltransferase , Intellectual Disability , Neurodevelopmental Disorders , Humans , DNA Methylation/genetics , Chromosomes, Human, Pair 9/genetics , Male , Female , Intellectual Disability/genetics , Intellectual Disability/pathology , Chromosome Duplication/genetics , Child , Child, Preschool , Neurodevelopmental Disorders/genetics , Neurodevelopmental Disorders/pathology , Developmental Disabilities/genetics , Developmental Disabilities/pathology , Craniofacial Abnormalities/genetics , Craniofacial Abnormalities/pathology , Adolescent , Phenotype
12.
Am J Med Genet A ; 194(6): e63550, 2024 Jun.
Article En | MEDLINE | ID: mdl-38297485

Klippel-Feil syndrome (KFS) has a genetically heterogeneous phenotype with six known genes, exhibiting both autosomal dominant and autosomal recessive inheritance patterns. PUF60 is a nucleic acid-binding protein, which is involved in a number of nuclear processes, including pre-mRNA splicing, apoptosis, and transcription regulation. Pathogenic variants in this gene have been described in Verheij syndrome due to either 8q24.3 microdeletion or PUF60 single-nucleotide variants. PUF60-associated conditions usually include intellectual disability, among other findings, some overlapping KFS; however, PUF60 is not classically referred to as a KFS gene. Here, we describe a 6-year-old female patient with clinically diagnosed KFS and normal cognition, who harbors a heterozygous de novo variant in the PUF60 gene (c.1179del, p.Ile394Serfs*7). This is a novel frameshift variant, which is predicted to result in a premature stop codon. Clinically, our patient demonstrates a pattern of malformations that matches reported cases of PUF60 variants; however, unlike most others, she has no clear learning difficulties. In light of these findings, we propose that PUF60 should be considered in the differential diagnosis of KFS and that normal cognition should not exclude its testing.


Klippel-Feil Syndrome , RNA Splicing Factors , Humans , Female , Child , Diagnosis, Differential , RNA Splicing Factors/genetics , Klippel-Feil Syndrome/genetics , Klippel-Feil Syndrome/diagnosis , Klippel-Feil Syndrome/physiopathology , Klippel-Feil Syndrome/pathology , Phenotype , Cognition , Repressor Proteins/genetics , Loss of Function Mutation/genetics , Intellectual Disability/genetics , Intellectual Disability/diagnosis , Intellectual Disability/pathology
13.
Am J Med Genet A ; 194(6): e63540, 2024 Jun.
Article En | MEDLINE | ID: mdl-38243407

Coffin-Siris Syndrome (CSS, MIM 135900) is now a well-described genetic condition caused by pathogenic variants in the Bromocriptine activating factor (BAF) complex, including ARID1B, ARID1A, ARID2, SMARCA4, SMARCE1, SMARCB1, SOX11, SMARCC2, DPF2, and more recently, BICRA. Individuals with CSS have a spectrum of various medical challenges, most often evident at birth, including feeding difficulties, hypotonia, organ-system anomalies, and learning and developmental differences. The classic finding of fifth digit hypo- or aplasia is seen variably. ARID2, previously described, is one of the less frequently observed gene changes in CSS. Although individuals with ARID2 have been reported to have classic features of CSS including hypertrichosis, coarse facial features, short stature, and fifth digit anomalies, as with many of the other CSS genes, there appears to be a spectrum of phenotypes. We report here a cohort of 17 individuals with ARID2 variants from the Coffin-Siris/BAF clinical registry and detail their medical challenges as well as developmental progress. Feeding difficulties, hypotonia, and short stature occur often, and hip dysplasia appears to occur more often than with other genes, however more severe medical challenges such as significant brain and cardiac malformations are rarer. Individuals appear to have mild to moderate intellectual impairment and may carry additional diagnoses such as ADHD. Further phenotypic description of this gene will aid clinicians caring for individuals with this rarer form of CSS.


Abnormalities, Multiple , Face/abnormalities , Hand Deformities, Congenital , Intellectual Disability , Micrognathism , Neck , Neck/abnormalities , Phenotype , Transcription Factors , Humans , Micrognathism/genetics , Micrognathism/diagnosis , Intellectual Disability/genetics , Intellectual Disability/pathology , Neck/pathology , Hand Deformities, Congenital/genetics , Hand Deformities, Congenital/diagnosis , Male , Female , Transcription Factors/genetics , Abnormalities, Multiple/genetics , Abnormalities, Multiple/diagnosis , Abnormalities, Multiple/pathology , Child , Child, Preschool , Infant , Mutation/genetics , Adolescent , DNA-Binding Proteins/genetics , Genetic Predisposition to Disease
14.
Am J Med Genet A ; 194(6): e63548, 2024 Jun.
Article En | MEDLINE | ID: mdl-38264805

Pathogenic PHF21A variation causes PHF21A-related neurodevelopmental disorders (NDDs). Although amorphic alleles, including haploinsufficiency, have been established as a disease mechanism, increasing evidence suggests that missense variants as well as frameshift variants extending the BHC80 carboxyl terminus also cause disease. Expanding on these, we report a proposita with intellectual disability and overgrowth and a novel de novo heterozygous PHF21A splice variant (NM_001352027.3:c.[153+1G>C];[=]) causing skipping of exon 6, which encodes an in-frame BHC80 deletion (p.(Asn30_Gln51del)). This deletion disrupts a predicted leucine zipper domain and implicates this domain in BHC80 function and as a target of variation causing PHF21A-related NDDs. This extension of understanding emphasizes the application of RNA analysis in precision genomic medicine practice.


Intellectual Disability , Neurodevelopmental Disorders , RNA Splicing , Female , Humans , Alleles , Exons/genetics , Intellectual Disability/genetics , Intellectual Disability/pathology , Neurodevelopmental Disorders/genetics , Neurodevelopmental Disorders/pathology , RNA Splicing/genetics , Sequence Analysis, RNA , Child
15.
Clin Genet ; 105(5): 523-532, 2024 05.
Article En | MEDLINE | ID: mdl-38247296

Pathogenic heterozygous loss of function variants in CTNNB1 are associated with CTNNB1 neurodevelopmental disorder. We report the clinical phenotype of individuals with CTNNB1 neurodevelopmental disorder using both caregiver-reported data (medical history, adaptive function, quality of life, and behavior issues) and in-person clinical assessments (neurological, motor, and cognitive function) in 32 individuals with likely pathogenic or pathogenic CTNNB1 variants. Most individuals had truncal hypotonia, muscle weakness, hypertonia, dystonia, microcephaly, and many had a history of tethered cord. Visual problems included strabismus, hyperopia, and familial exudative vitreoretinopathy. Half of individuals walked without an assistive device. The mean Gross Motor Functional Measure-66 score was 56.6 (SD = 14.8). Average time to complete Nine-Hole Peg Test was slower than norms. Mean general conceptual ability composite scores from Differential Ability Scales Second Edition were very low (M = 58.3, SD = 11.3). Fifty-five percent of individuals had low adaptive functioning based on the Vineland Adaptive Behavioral Scales. Based upon the Child Behavior Checklist total problems score, the majority (65%) of individuals had behavioral challenges. The mean overall Quality of Life Inventory-Disability score was 81.7 (SD = 11.9). These data provide a detailed characterization of clinical features in individuals with CTNNB1 neurodevelopmental disorder.


Intellectual Disability , Microcephaly , Neurodevelopmental Disorders , Child , Humans , Quality of Life , Intellectual Disability/genetics , Intellectual Disability/pathology , Phenotype , Microcephaly/genetics , beta Catenin/genetics
16.
Genet Med ; 26(5): 101087, 2024 May.
Article En | MEDLINE | ID: mdl-38288683

PURPOSE: Interneuronopathies are a group of neurodevelopmental disorders characterized by deficient migration and differentiation of gamma-aminobutyric acidergic interneurons resulting in a broad clinical spectrum, including autism spectrum disorders, early-onset epileptic encephalopathy, intellectual disability, and schizophrenic disorders. SP9 is a transcription factor belonging to the Krüppel-like factor and specificity protein family, the members of which harbor highly conserved DNA-binding domains. SP9 plays a central role in interneuron development and tangential migration, but it has not yet been implicated in a human neurodevelopmental disorder. METHODS: Cases with SP9 variants were collected through international data-sharing networks. To address the specific impact of SP9 variants, in silico and in vitro assays were carried out. RESULTS: De novo heterozygous variants in SP9 cause a novel form of interneuronopathy. SP9 missense variants affecting the glutamate 378 amino acid result in severe epileptic encephalopathy because of hypomorphic and neomorphic DNA-binding effects, whereas SP9 loss-of-function variants result in a milder phenotype with epilepsy, developmental delay, and autism spectrum disorder. CONCLUSION: De novo heterozygous SP9 variants are responsible for a neurodevelopmental disease. Interestingly, variants located in conserved DNA-binding domains of KLF/SP family transcription factors may lead to neomorphic DNA-binding functions resulting in a combination of loss- and gain-of-function effects.


Autism Spectrum Disorder , Epilepsy , Intellectual Disability , Interneurons , Humans , Autism Spectrum Disorder/genetics , Autism Spectrum Disorder/pathology , Intellectual Disability/genetics , Intellectual Disability/pathology , Epilepsy/genetics , Epilepsy/pathology , Male , Female , Interneurons/metabolism , Interneurons/pathology , Child , Child, Preschool , Transcription Factors/genetics , Transcription Factors/metabolism , Phenotype , Mutation, Missense/genetics , Heterozygote , Adolescent , Neurodevelopmental Disorders/genetics , Neurodevelopmental Disorders/pathology
17.
Clin Genet ; 105(4): 423-429, 2024 04.
Article En | MEDLINE | ID: mdl-38088234

Intellectual disability (ID) is a large group of neurodevelopmental disorders characterized by a congenital limitation in intellectual functioning (reasoning, learning, and problem solving), adaptive behavior (conceptual, social, and practical skills), originated at birth and manifested before the age of 18. By whole exome sequencing of five consanguineous Pakistani families presenting hallmark features of ID, global developmental delay, aggressive and self-injurious behaviors, microcephaly, febrile seizures and facial dysmorphic features, we identified three novel homozygous missense variants (NM_024298.5: c.588G > T; p.Trp196Cys, c.736 T > C; p.Tyr246His and c.524A > C; p. Asp175Ala) and one rare homozygous in-frame deletion variant (c.758_778del;p.Glu253_Ala259del) in membrane-bound O-acyltransferase family member 7 (MBOAT7) gene previously associated with autosomal recessive neurodevelopmental disorder. The segregation of the variants was validated by Sanger sequencing in all family members. In silico homology modeling of wild-type and mutated proteins revealed substantial changes in the structure of both proteins, indicating a possible effect on function. The identification and validation of new pathogenic MBOAT7 variants in five cases of autosomal recessive ID further highlight the importance of this genes in proper brain function and development.


Intellectual Disability , Nervous System Malformations , Neurodevelopmental Disorders , Infant, Newborn , Humans , Exome Sequencing , Pedigree , Neurodevelopmental Disorders/genetics , Intellectual Disability/pathology , Family , Nervous System Malformations/complications , Acyltransferases/genetics , Membrane Proteins/genetics
18.
Ophthalmic Genet ; 45(2): 164-166, 2024 Apr.
Article En | MEDLINE | ID: mdl-37528764

INTRODUCTION: Koleen-De Vries syndrome (KDVS) is a rare genetic condition characterized by typical facial features, intellectual disability, cardiac and renal diseases, and ophthalmic manifestations. The syndrome is known to be caused by a microdeletion in the 17q21.31 region, involving multiple genes, including the KANSL1 gene. CASE PRESENTATION: We present the case of a 9-year-old boy with no family history of ophthalmic syndromes. The patient exhibited bilateral hypopigmented iris and unilateral choroidal and retinal pigment epithelium (RPE) hypopigmentation. DISCUSSION: The presence of ophthalmic manifestations, such as bilateral hypopigmented iris and unilateral choroidal and RPE hypopigmentation, in a patient with KDVS adds to the clinical spectrum of this syndrome. Although the exact mechanism underlying these ocular findings is not yet fully understood, the microdeletion in the 17q21.31 region, which includes the KANSL1 gene, is likely to play a role. CONCLUSION: This case highlights the importance of considering ophthalmic manifestations in individuals diagnosed with Koleen-De Vries syndrome. Further research is needed to better understand the pathogenesis and clinical implications of these ocular findings.


Abnormalities, Multiple , Hypopigmentation , Intellectual Disability , Male , Humans , Child , Intellectual Disability/diagnosis , Intellectual Disability/genetics , Intellectual Disability/pathology , Abnormalities, Multiple/genetics , Chromosome Deletion , Rare Diseases/genetics , Syndrome , Chromosomes, Human, Pair 17
19.
Am J Med Genet A ; 194(1): 82-87, 2024 Jan.
Article En | MEDLINE | ID: mdl-37750385

Brunner syndrome is a recessive X-linked disorder caused by pathogenic variants in the monoamine oxidase A gene (MAOA). It is characterized by distinctive aggressive behavior, mild intellectual disability, sleep disturbances, and typical biochemical alterations deriving from the impaired monoamine metabolism. We herein describe a 5-year-old boy with developmental delay, autistic features, and myoclonic epilepsy, and his mother, who had mild intellectual disability and recurrent episodes of palpitations, headache, abdominal pain, and abdominal bloating. Whole exome sequencing allowed detection of the maternally-inherited variant c.410A>G, (p.Glu137Gly) in the MAOA gene. The subsequent biochemical studies confirmed the MAOA deficiency both in the child and his mother. Given the serotonergic symptoms associated with high serotonin levels found in the mother, treatment with a serotonin reuptake inhibitor and dietary modifications were carried out, resulting in regression of the biochemical abnormalities and partial reduction of symptoms. Our report expands the phenotypic spectrum of Brunner disease, bringing new perspectives on the behavioral and neurodevelopmental phenotype from childhood to adulthood.


Intellectual Disability , Male , Female , Humans , Child , Adolescent , Young Adult , Child, Preschool , Intellectual Disability/diagnosis , Intellectual Disability/genetics , Intellectual Disability/pathology , Mothers , Monoamine Oxidase/chemistry , Monoamine Oxidase/genetics , Monoamine Oxidase/metabolism , Phenotype
20.
Am J Med Genet A ; 194(1): 100-102, 2024 Jan.
Article En | MEDLINE | ID: mdl-37706616

Woodhouse-Sakati syndrome consists of hypogonadism, diabetes mellitus, alopecia, ECG abnormalities, and dystonia. This condition is caused by the loss of function of the DCAF17 gene. Most of the patients have been reported from Greater Middle Eastern countries. We report a 38 male from southern India who presented with syncope and massive hemoptysis due to ruptured bronchopulmonary collaterals. He also had alopecia, cataracts, recently diagnosed diabetes and hypogonadism. Whole exome sequencing showed a novel homozygous truncating variant in the DCAF17 gene. Despite embolization of the aortopulmonary collaterals, the patient died of recurrent hemoptysis.


Diabetes Mellitus , Hypogonadism , Intellectual Disability , Humans , Male , Hemoptysis , Nuclear Proteins/genetics , Diabetes Mellitus/diagnosis , Diabetes Mellitus/genetics , Diabetes Mellitus/pathology , Alopecia/complications , Alopecia/diagnosis , Alopecia/genetics , Intellectual Disability/diagnosis , Intellectual Disability/genetics , Intellectual Disability/pathology , Hypogonadism/diagnosis , Hypogonadism/genetics , Hypogonadism/pathology , Ubiquitin-Protein Ligase Complexes
...